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The evolution of the interface between two viscous fluid layers in a two-dimensional
horizontal channel confined between two parallel walls is considered in the limit of
Stokes flow. The motion is generated either by the translation of the walls, in a shear-
driven or plane-Couette mode, or by an axial pressure gradient, in a plane-Poiseuille
mode. Linear stability analysis for infinitesimal perturbations and fluids with matched
densities shows that when the viscosities of the fluids are different and the Reynolds
number is sufficiently high, the flow is unstable. At vanishing Reynolds number, the
flow is stable when the surface tension has a non-zero value, and neutrally stable when
the surface tension vanishes. We investigate the behaviour of the interface subject to
finite-amplitude two-dimensional perturbations by solving the equations of Stokes
flow using a boundary-integral method. Integral equations for the interfacial velocity
are formulated for the three modular cases of shear-driven, pressure-driven, and
gravity-driven flow, and numerical computations are performed for the first two
modes. The results show that disturbances of sufficiently large amplitude may cause
permanent interfacial deformation in which the interface folds, develops elongated
fingers, or supports slowly evolving travelling waves. Smaller amplitude disturbances
decay, sometimes after a transient period of interfacial folding. The ratio of the
viscosities of the two fluids plays an important role in determining the morphology of
the emerging interfacial patterns, but the parabolicity of the unperturbed velocity
profile does not affect the character of the motion. Increasing the contrast in the
viscosities of the two fluids, while keeping the channel capillary number fixed,
destabilizes the interfaces ; re-examining the flow in terms of an alternative capillary
number that is defined with respect to the velocity drop across the more-viscous layer
shows that this is a reasonable behaviour. Comparing the numerical results with the
predictions of a lubrication-flow model shows that, in the absence of inertia, the
simplified approach can only describe a limited range of motions, and that the physical
relevance of the steadily travelling waves predicted by long-wave theories must be
accepted with a certain degree of reservation.

1. Introduction

Interfaces between two adjacent fluids are susceptible to various kinds of
hydrodynamic instabilities with different origins and diverse mechanisms of growth.
The Kelvin–Helmholtz instability may be regarded as the instability of a vortex layer
established along an interface at high Reynolds numbers; the capillary instability is due
to pressure variations generated by the deformation of a corrugated three-dimensional
interface; and the Marangoni instability is due to variations in surface tension
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produced, for example, by a temperature field or by an uneven distribution of
surfactants.

Perhaps the most subtle and poorly understood type of interfacial instability is the
one caused by differences in the viscosities of two adjacent fluids in parallel shearing
motion. At high Reynolds numbers, the growth of perturbations may be associated
with the discontinuity in the vorticity or slope of the unperturbed velocity across the
interface, which is necessary in order for the shear stress to remain continuous across
the interface. Accordingly, one may argue that viscosity is important only in so far as
to establish this discontinuity, and plays a secondary role in the subsequent motion.
The growth or decay of interfacial perturbations may then be studied in the context of
the equations of inviscid flow under the formalism of vorticity dynamics. Relevant
studies include those of the instability of semi-infinite vortex regions, vortex layers of
finite thickness, compound vortex layers, and vortex layers attached to walls.

At low and moderate Reynolds numbers, the nominal cause of the instability, and
the physical mechanisms by which it proceeds is not as clear. The linear stability
analysis of the plane Poiseuille flow of two superposed layers conducted by Yiantsios
& Higgins (1988) indicates that, even when viscous forces are significant or dominant,
the instability may be still attributed to the discontinuity in the slope of the
unperturbed velocity across the interface: when the slope is continuous, the flow is
either neutrally stable or stable at any Reynolds number. One may argue that ripples
of a viscous fluid adjacent to a less-viscous fluid are sustained for an extended period
of time and thus have a better chance to grow.

Hinch (1984) proposed a simple physical explanation for the growth of interfacial
waves with short wavelength and infinitesimal amplitude on the flat interface of two
parallel streams in shearing motion, in the absence of surface tension. His arguments
consider the generation and redistribution of vorticity around the interface, the latter
due to convection. It would appear that convective transport is necessary for the onset
of an instability due to viscosity striation, and that a slightly perturbed interface will
either be neutrally stable or return to its unperturbed position under conditions of
Stokes flow, but this is not generally true.

Consider, for example, the motion of a liquid layer down an inclined plane, with
another layer of a lubricating fluid of the same density separating it from the plane.
When the viscosity of the lubricant is lower than the viscosity of the layer and the
surface tension is negligible, linear stability analysis predicts that the interface is
unstable regardless of the ratio of the thicknesses of the two layers (Loewenherz &
Lawrence 1989). This behaviour has been characteristically described as ‘anti-
lubrication’ (Chen 1990). A similar behaviour has been predicted for the three-layer
film flow down an inclined plane or through a channel (e.g. Li 1969; Weinstein & Kurz
1991; Kliakhandler & Sivashinsky 1997).

One can make an analogy between the instability due to viscosity striation and the
fingering Saffman–Taylor instability of an interface between two viscous fluids moving
in a Hele–Shaw cell or through a porous medium. When the surface tension is
sufficiently low, a low-viscosity fluid pushing a high-viscosity fluid is known to
penetrate it by developing elongated fingers. But in the case of the fingering instability
the motion can be modelled and analysed in the context of irrotational flow for the
depth-averaged velocity, using a well-established formalism of vortex dynamics, and
the instability may be attributed to the self-induced motion of an effective interfacial
vortex sheet. An analogous formulation is not possible for two-dimensional viscous
flow.

Instability due to a discontinuity in the viscous across an interface, or to the non-
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uniform viscosity of a single fluid, has been studied from two general perspectives.
From a fundamental point of view, one seeks to describe the motion of a sharp or
diffuse interface in a general shear flow; from a practical point of view, one seeks to
characterize the behaviour of liquid layers in channel or falling-film flow. The practical
point of view is motivated by applications in two-phase flow through pipes and porous
media, flooding in counter-current flows, co-extrusion of polymers, solvent cleaning,
ink-jet printing, and physiological flows over tissues lined with coatings of biological
materials.

There is yet another incentive for studying the dynamics of viscous interfacial flow,
including the layered flow considered here, stemming from a long-standing desire to
identify the physical mechanisms of heterogeneous mixing and describe the evolving
morphology of the interfacial patterns due to agitation. Intricate interfacial patterns
developing when passive interfaces – separating fluids with identical physical properties
in the absence of surface tension – are subjected to, and advected by, various types of
elementary flows have been described by experimental and numerical methods (e.g.
Ottino 1989; Jana, Metcalfe & Ottino 1994). Much less work has been done on the
motion of active interfaces separating fluids with different physical properties in the
presence of surface tension. In this case, the velocity field may no longer be specified
but is coupled with the dynamics of the flow, and the position and motion of the
interface. Previous work has considered predominantly mixing in high-Reynolds-
number and turbulent shear flows, such as shear layers and jets. The low-Reynolds-
number viscosity-dominated or creeping motion has received much less attention.

Linear analyses of the stability of an interface between two immiscible viscous fluids
in shearing motion have been presented on many occasions following the pioneering
work of Yih (1967). The base flow may be an infinite shear flow, a semi-infinite shear
flow bounded by a plane wall, a layered channel flow, or a multi-film flow. The motion
may be driven by boundary translation, pressure drop, or a body force. Literature
surveys can be found in the more recent papers of Renardy (1985), Yiantsios & Higgins
(1988), Hooper (1989), Anturkar, Papanastasiou & Wilkes (1990), Su & Khomami
(1992), Tilley, Davis & Bankoff (1994a), and Coward et al. (1997). Chapter 8 of a
monograph by Han (1981) discusses the linear stability of layered non-Newtonian flow
with reference to polymer processing.

Hesla, Pranckh & Preziosi (1986) devised a generalized Squire transformation that
appears to make the study of three-dimensional perturbations redundant. They argued
that, in the case of two-layer flow in a horizontal channel with constant surface tension
and stable density stratification, only two-dimensional perturbations need to be
considered in order to determine the marginal stability boundaries. Yiantsios &
Higgins (1988) pointed out that, in some instances, the existence of the generalized
Squire transformation does not necessarily render the study of three-dimensional
perturbations redundant. The relation between three-dimensional and two-dimensional
disturbances was discussed further and clarified by Joseph & Renardy (1992, vol. 1)
and Tilley et al. (1994a).

Several attempts have been made to describe the nonlinear motion in the contexts
of lubrication flow and weakly nonlinear theory of dynamical systems. For example,
Hooper & Grimshaw (1985), Hooper (1985), Shlang et al. (1985), Renardy & Renardy
(1993), and Charru & Fabre (1994) derived nonlinear evolution equations for the layer
thicknesses in the limit as both the wavelength and amplitude of the perturbation are
small compared to the unperturbed layer thickness. Ooms et al. (1985), and Tilley,
Davis & Bankoff (1994b) derived more involved evolution equations applicable under
general circumstances where the wavelength of the perturbation is small compared to
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the unperturbed layer thickness, but the amplitude of the interface is not necessarily
small compared to the channel width. These analyses and accompanying numerical
solutions revealed behaviours similar to, but richer than, those exhibited by the widely
studied single-film flow down an inclined plane. The physical relevance of these
motions was criticized by Barthelet, Charru & Fable (1995). The lubrication-flow
model of Ooms et al. (1985) will be discussed in §3 of the present paper.

The fully nonlinear motion has been the subject of several recent numerical studies.
Bai, Kelkar & Joseph (1996) computed the shape of steadily propagating axisymmetric
interfacial waves in the arrangement of core–annular flow, under the assumption that
the core-fluid viscosity is so large that the core translates as a rigid body. The
core–annular flow bears many similarities to the layered channel flow, but there are
also important differences due to the destabilizing effect of surface tension in
axisymmetric or three-dimensional flow. Coward et al. (1997) presented numerical
simulations of two-layer plane-Couette flow at moderately high and relatively low
Reynolds numbers using the volume-of-fluid method. Their results confirmed the
destabilizing influence of the fluid inertia, and confirmed interfacial steepening due to
nonlinearity. Similar numerical results for selected case studies were presented by Yiu
& Chen (1996) and Zaleski et al. (1996). A systematic numerical investigation of the
long-time evolution of two-layer Couette or Poiseuille flow has not been presented even
under conditions of creeping flow.

Experimental studies of two-layer flow are also limited. Kao & Park (1972)
established critical conditions for the onset of instabilities in turbulent two-layer
Poiseuille flow in a rectangular channel ; their results were discussed critically by
Yiantsios & Higgins (1988). Han (1991, Chap. 8) discusses observations of three-
dimensional instabilities of layered non-Newtonian flow and emphasizes their
importance for product quality. It appears that the only experimental study of Couette
flow is due to Barthelet et al. (1995). They found that, above a critical shear rate, the
interface develops a fundamental slowly growing long wave, whose wavelength is equal
to the perimeter of their square channel, and its harmonics. The dynamical properties
of these waves were analysed in the context of the theory of dynamical systems.

In this work, we perform a numerical investigation of two-layer channel Stokes flow
subject to two-dimensional perturbations, and examine the effect of the various
geometrical or physical parameters of the flow. The motion is driven either by the
translation of the walls or by a pressure gradient. In both cases, linear stability analysis
predicts that the interfacial waves are neutrally stable or decay; neutral stability occurs
only in the absence of surface tension. We compute the evolution of the interface when
the magnitude of a disturbance is so large so that nonlinear effects may no longer be
neglected, and the shape of the interface does not have a wavy form. The results reveal
that, in both cases, the nonlinear motion can be unstable if the magnitude of the
perturbation is sufficiently high. The morphology of the interfacial patterns emerging
as a result of the instability is shown to depend strongly on the ratio of the viscosities
of the two fluids.

The numerical investigations are conducted using a boundary integral method for
periodic two-layer channel flow. In §2, we formulate the integral equations whose
solutions produce the interfacial velocity for shear-driven, pressure-driven, and
gravity-driven flow; the third case is included for completeness. The use of the periodic
Green’s function of the equations of Stokes flow in a channel that is bounded by two
walls allows us to obtain accurate numerical results with a computational cost that
ranges from reasonable to substantial but affordable.
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2. Boundary integral formulation for channel flow

We consider the flow of two stratified fluids in a channel that is confined between two
parallel plane walls located at y¯³h, as shown in figure 1(a). The lower and upper
fluids are labelled respectively with the superscript or subscript 1 and 2. The interfacial
shape and velocity field are repeated along the x-axis with period L, and the pressure
is allowed to drop by a specified amount over the length of each periodic cell.

Assuming that the appropriate Reynolds number of the flow is negligibly small so
that the effects of inertia can be uniformly neglected and the motion of both fluids is
governed by the equations of Stokes flow, we set out to develop a boundary-integral
formulation that is applicable to the three modular cases of shear-driven, pressure-
driven, and gravity-driven Stokes flow, or any combination thereof. The ultimate
objective is to derive integral equations for the interfacial velocity that can be solved
with the least amount of effort and a high level of accuracy.

2.1. General formulation

As a preliminary, we decompose the velocity fields of the lower and upper fluids,
denoted as u(") and u(#), into a reference component, denoted as yR(") and uR(#), and a
disturbance component, denoted as uD(") and uD(#). Thus, by definition

u(")¯uR(")­uD("), u(#)¯uR(#)­uD(#). (1)

The reference components satisfy the continuity equation and the Stokes equation with
the body-force term included,

®¡pR(")­µ
"
~#uR(")­ρ

"
g¯0, ®¡pR(#)­µ

#
~#uR(#)­ρ

#
g¯0, (2)

where p is the pressure, ρ is the density, and g is the acceleration due to gravity. The
disturbance components satisfy the continuity equation and the homogeneous Stokes
equation,

®¡pD(")­µ
"
~#uD(")¯0, ®¡pD(#)­µ

#
~#uD(#)¯0. (3)

All velocity fields satisfy the continuity equation. The boundary conditions imposed on
the reference and disturbance flows will be discussed later in this section.

Requiring the velocity to be continuous across the interface, we find that at a point
x located at the interface,

uR(")(x)­uD(")(x)¯uR(#)(x)­uD(#)(x). (4)

The jump in the traction across the interface, defined as ∆f3 f (")®f (#)¯
(σ(")®σ(#))[n, due, for example, to surface tension, is also resolved into a reference and
a disturbance component; σ is the stress tensor, and n is the unit vector normal to the
interface pointing into the lower fluid labelled 1 as shown in figure 1(a). Thus, for a
point x located at the interface, we write

∆f(x)¯∆f R(x)­∆f D(x). (5)

For an interface with uniform surface tension γ, ∆ f(z)¯γκn, where κ is the curvature
of the trace of the interface in the (x, y)-plane.

To complete the preparations for the boundary-integral formulation, we introduce
the periodic Green’s function of two-dimensional channel Stokes flow, denoted as
G"P−#W(x,x

!
;α), where the superscripts 1P and 2W stand, respectively, for singly

periodic and two walls. Physically, u
i
(x)¯ 1}(4πµ)G"P−#W

ij
(x,x

!
;α) b

j
is the velocity at

the point x induced by an array of point forces with equal strengths b deployed along
the x-axis and separated by a distance L, where one of the point forces is located at the
point x

!
; µ is the density of the fluid. The parameter α sets the pressure drop over one

period of the flow, ∆P"P−#W, and thus the axial flow rate Q"P−#W : a two-dimensional
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F 1. (a) Periodic two-layer flow in a channel confined between two parallel plane walls. (b)
Couette flow driven by the translation of the two walls. (c) Poiseuille flow driven by a pressure
gradient. (d ) Gravity-driven flow in an inclined channel.

Hagen–Poiseuille flow may be added to the flow produced by the point forces to alter
both. The computation of G"P−#W(x,x

!
;α), ∆P"P−#W, and Q"P−#W, and of the

associated stress tensor T"P−#W(x,x
!
;α) are discussed in detail by Pozrikidis (1992) and

Zhou & Pozrikidis (1993). A  subroutine that computes these quantities is
available from the author.

We are now in a position to apply the well-established boundary-integral formulation
for interfacial flow, e.g. Pozrikidis (1992, Chap. 5), to describe and subsequently
compute the disturbance flow. Stipulating that the disturbance velocity vanishes over
the upper and lower channel walls, taking into account equations (4) and (5), and using
the distinctive properties of the Green’s function, we express the disturbance velocity
in terms of integrals evaluated over one period of the interface, denoted as I. For a
point x

!
that lies within the lower fluid, labelled 1, we find

uD(")
j

(x
!
)¯

1

4πµ
"

Q"P−#W∆PDi®
1

4πµ
"

&
I

(∆ f
i
®∆ fR

i
) (x)G"P−#W

ij
(x,x

!
;α) dl(x)

­
1®λ

4π &
I

uD(")
i

(x)T"P−#W
ijk

(x,x
!
;α) n

k
(x) dl(x)

®
λ

4π&
I

(uR(")
i

®uR(#)
i

) (x)T"P−#W
ijk

(x,x
!
;α) n

k
(x) dl(x)

®
1

4π
[QD(")­λQD(#)]∆P"P−#Wi, (6)

where ∆PD is the pressure drop due to the disturbance flow over one period, QD(") and
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QD(#) are the axial flow rates of the lower and upper fluid into or out of a periodic cell
containing the periodic interfacial segment I, i is the unit vector along the x-axis, and
λ¯µ

#
}µ

"
.

Considering a point x
!

that lies within the upper fluid, labelled 2, we derive an
identical expression, except that the velocity on the left-hand side is multiplied by the
viscosity ratio λ. For a point x

!
that lies at the interface I, the velocity on the left-hand

side is multiplied by the factor (1­λ)}2, and the second and third integrals on the
right-hand side are interpreted in the sense of their principal value; this is an integral
equation of the second kind for the disturbance interfacial velocity uD(")(x).

To expedite the numerical solution, we stipulate that ∆P"P−#W¯ 0, for then the
troublesome last term on the right-hand side of equation (6) disappears. This choice
will be indicated by setting α¯ 0 in the argument of the Green’s function. Furthermore,
we specify that ∆PD¯ 0, for then the first term on the right-hand side of equation (6)
disappears and we are left with a simplified expression. These two assumptions will be
implicit in the forthcoming discussion. It is sometimes, but not always, beneficial to
choose a reference velocity field that is continuous across the interface, for then the
third integral on the right-hand side of equation (6) disappears leading to a simplified
representation; in this case, uD(")(x)¯uD(#)(x) at a point x that is located at the
interface.

In the following three subsections, we derive specific forms of the boundary-integral
representation and associated integral equation emanating from the master equation
(6), for the three fundamental modes of shear-driven, pressure-driven, and gravity-
driven flow. These forms are distinguished by the choice of the reference flows.

2.2. Shear-dri�en flow

Consider shear-driven flow in a horizontal channel of width 2h, as depicted in figure
1(b). The lower and upper walls translate parallel to themselves with respective
velocities equal to U

"
and U

#
. The origin of the coordinate system has been set mid-

way between the two plates, and the gravity vector points toward the negative direction
of the y-axis.

In this case, it is beneficial to select the reference velocity and pressure fields

uR(")¯χ(y®y
R
) i, pR(")¯P

!
®ρ

"
gy,

uR(#)¯χ(y®y
R
) i, pR(#)¯P

!
®ρ

#
gy,

5

6

7

8

(7)

where χ is a global shear rate and y
R

is a reference length, both to be defined shortly,
P
!

is a reference pressure, and g is the magnitude of the acceleration due to gravity.
Note that this reference velocity field is continuous across the interface. One may
readily verify that the fields (7) satisfy equations (2).

To find the appropriate values of χ and y
R
, we recall that the disturbance velocity

should vanish at the two walls, and require that uR(")(y¯®h)¯®χ(h­y
R
)¯U

"
, and

uR(#)(y¯ h)¯χ(h®y
R
)¯U

#
, where u signifies the x-component of the velocity. We

then find

χ¯
∆U

2h
, y

R
¯®h

U
"
­U

#

∆U
, (8)

where ∆U¯U
#
®U

"
. The linear profile of the reference velocity is drawn with the

dashed line in figure 1(b).
With the choices stated in (7), the boundary-integral representation (6) simplifies to
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uD(")
j

(x
!
)¯®

1

4πµ
"

&
I

(∆ f
i
®∆ fR

i
) (x)G"P−#W

ij
(x,x

!
;α¯ 0) dl(x)

­
1®λ

4π &
I

uD
i
(x)T"P−#W

ijk
(x,x

!
;α¯ 0) n

k
(x) dl(x), (9)

and the associated integral equation is

uD
j
(x

!
)¯®

1

4πµ
"

2

1­λ&
I

(∆ f
i
®∆ fR

i
) (x)G"P−#W

ij
(x,x

!
;α¯ 0) dl(x)

­
1®λ

4π

2

1­λ&
PV

I

uD
i
(x)T"P−#W

ijk
(x,x

!
;α¯ 0) n

k
(x) dl(x), (10)

where the point x
!
lies on the interface. The qualifier PV designates the principal value

of the double-layer integral. Note that the coefficient of the double-layer integral
vanishes when λ¯ 1.

A straightforward computation shows that the jump in the interfacial traction
appearing in the single-layer integral on the right-hand sides of (9) and (10) is given by

∆ f R3 f R(")®f R(#)¯ (σR(")®σR(#))[n

¯ (1®λ)µ
"
χ(n

y
i­n

x
j)­∆ρ gyn, (11)

where ∆ρ¯ ρ
"
®ρ

#
, and j is the unit vector along the y-axis.

In the simple case of rectilinear flow with a flat interface located at y¯ y
!
, an exact

solution to the integral equation (10) can be found by elementary methods. In this case,
the x-components of the velocities of the lower and upper fluids are given respectively
by

u(")¯ ξ
"
(y­h)­U

"
, u(#)¯ ξ

#
(y®h)­U

#
, (12)

where

ξ
"
¯

∆U

h
"

λ

λ­R
, ξ

#
¯

∆U

h
"

1

λ­R
, (13)

h
"
¯ h­y

!
is the lower-layer thickness, h

#
¯ h®y

!
is the upper-layer thickness, and R

is the thickness ratio, R¯ h
#
}h

"
. This composite velocity profile is drawn with the

solid line in figure 1(b). The velocity at the interface is given by u
I
¯

∆Uλ}(λ­R)­U
"
. Combining this expression with (7) and (8), we find that the

disturbance velocity at the interface is given by

uD
I

¯∆U
R

1­R

λ®1

λ­R
. (14)

This is an exact solution of the integral equation (10) for a flat interface with ∆ f¯ cn
where c is an arbitrary constant, and for any period length L.

2.3. Pressure-dri�en flow

We consider next pressure-driven flow in a horizontal channel with a non-zero pressure
drop over one period, equal to ∆P, corresponding to the effective pressure gradient
G¯®∆P}L, as depicted in figure 1(c).

In this case, we select the reference velocity and pressure fields

uR(")¯
G

2µ
"

(h#®y#) i, pR(")¯P
"
®Gx®ρ

"
gy,

uR(#)¯
G

2µ
#

(h#®y#) i, pR(#)¯P
#
®Gx®ρ

#
gy,

5

6

7

8

(15)
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where P
"

and P
#

are two reference pressures. Note that this reference velocity, whose
profile is drawn with the dashed line in figure 1(c), is not continuous across the
interface. One may readily verify that the fields (15) satisfy (2), as required. The
associated jump in the interfacial traction is

∆ f R¯∆ρ gyn®(P
"
®P

#
)n. (16)

Substituting these expressions into the boundary-integral representation (6), noting
that at the interface uR(#)¯ (1}λ)uR("), combining the third with the second integral on
the right-hand side, and adding to both sides the reference velocity uR("), we obtain a
simplified expression for the velocity in fluid 1:

u(")
j

(x
!
)¯ uR(")

j
(x

!
)®

1

4πµ
"

&
I

(∆ f
i
®∆ fR

i
) (x)G"P−#W

ij
(x,x

!
;α¯ 0) dl(x)

­
1®λ

4π &
I

u
i
(x)T"P−#W

ijk
(x,x

!
;α¯ 0) n

k
(x) dl(x). (17)

The associated integral equation for the interfacial velocity is

u
j
(x

!
)¯

2

1­λ
uR(")
j

(x
!
)®

1

4πµ
"

2

1­λ&
I

(∆ f
i
®∆ fR

i
) (x)G"P−#W

ij
(x,x

!
;α¯ 0) dl(x)

­
1®λ

4π

2

1­λ&
PV

I

u
i
(x)T"P−#W

ijk
(x,x

!
;α¯ 0) n

k
(x) dl(x) (18)

where the point x
!

lies at the interface.
In the simple case of rectilinear flow with a flat interface located at y¯ y

!
, an exact

solution to the integral equation (18) can be found by elementary methods. Using the
notation of §2.2, we find that the x-component of the velocity of the lower and upper
fluid is given respectively by

u(")¯ (y}h­1) (ψ
"
y­u

I
), u(#)¯ (y}h®1) (ψ

#
y®u

I
), (19)

where ψ
"

and ψ
#

are two shear rates, and u
I

is the velocity at the interface given by

u
I
¯

Gh#

µ
"

1

1­R

2R

λ­R
, (20)

where R¯ h
#
}h

"
. This composite velocity profile is drawn with the solid line in

figure 1(c). The right-hand side of (20) satisfies the integral equation (18) with ∆ f¯
cn where c is an arbitrary constant, for a flat interface, and for any period length L.

2.4. Gra�ity-dri�en flow

In the final case, we consider gravity-driven flow in a channel that is inclined at an
angle θ

!
with respect to the horizontal direction. The channel is assumed to be open at

both ends so that there is no pressure drop across its length, as depicted in figure 1(d ).
In this case, we select the reference velocity and pressure fields

uR(")¯
ρ
"
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!

2µ
"

(h#®y#) i, pR(")¯P
"
®ρ

"
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!
,

uR(#)¯
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!
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#

(h#®y#) i, pR(#)¯P
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®ρ

#
gy sin θ

!
,

5

6

7

8

(21)
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where P
"
and P

#
are two reference pressures. As in the case of pressure-driven flow, the

reference velocity is not continuous across the interface. One may readily verify that
the fields (21) satisfy (2), as required. The associated jump in the interfacial traction is

∆ f R¯∆ρ gy 9 n
x
cos θ

!
®n

y
sin θ

!

®n
x
sin θ

!
­n

y
cos θ

!

:®(P
"
®P

#
)n. (22)

Substituting these expressions into the boundary-integral representation (6), and
combining several terms, we obtain
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where we have introduced the density ratio β¯ ρ
#
}ρ

"
.

The associated integral equation for the interfacial velocity u is
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(x) dl(x), (24)

where the point x
!
lies at the interface. Note that the disappearance of the double-layer

potential requires that the physical properties of the two fluids be matched, λ¯ 1 and
β¯ 1.

In the simple case of rectilinear flow with a flat interface located at y¯ y
!
, an exact

solution to the integral equation (24) can be found by elementary methods. The
composite velocity profile is drawn with the solid line in figure 1(d ). The x-
component of the interfacial velocity is given by

u
I
¯

ρ
"
gh# sin θ

!

µ
"

1­βR

(1­R)#

2R

λ­R
. (25)

When β¯ 1, (23), (24), and (25) reduce, respectively, to (17), (18), and (20) for
pressure-driven flow with an effective pressure gradient given by G¯ ρ

"
g sin θ

!
.

2.5. Numerical solution of the integral equations

The integral equations of the second kind derived in the preceding subsections were
solved using a standard iterative method. One period of the interface was traced by a
set of marker points, and the interfacial velocity was assumed to vary linearly with
respect to arclength between two adjacent points. The theoretical foundation of the
iterative method and its numerical implementation are well-established (e.g. Pozrikidis
1992) and will not be described here. The accuracy of the numerical method was
confirmed by comparing the numerical solution to the exact solutions for the flat
interfaces discussed previously in this section, and finding agreement up to the sixth
significant figure, as well as by performing numerous tests of convergence.

To describe the evolution of the interface, the position of each marker point was
advanced using either the component of the velocity of the fluid normal to the
interface, or the total velocity of the fluid. The integration of the associated system of
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ordinary differential equations for the marker point position was carried out using the
second-order Runge–Kutta method. An adaptive point redistribution routine was
implemented to allow the resolution of regions of high curvature, while keeping the
number of marker points at an economical level. The change in the area of each layer
due to numerical error was less than 0±1% throughout the duration of each simulation,
and much less than that in most cases.

In a typical simulation, each period of each interface was described by 32 to 120
marker points. The computational cost was a strong function of the number of marker
points and flow conditions, as will be discussed in the following sections, demanding
from 1 to 60 h of CPU time on a  station 20. The case λ¯ 1 was given
particular attention since then the integral equation reduces to an integral
representation, and the computation of the interfacial velocity incurs the least
computational cost.

3. Shear-driven flow

First, we study the stability of the interface between two layers in shear-driven
Stokes flow depicted in figure 1(b), subject to a two-dimensional periodic perturbation
of wavelength L that disturbs the interface in a sinusoidal manner with amplitude a

!
.

The densities of the fluids are assumed to be matched so that gravity does not play a
role ; in the notation of the preceding section, β¯ 1. More formally, we assume that
a properly defined Bond or Weber number of the flow is infinitely large. Furthermore,
we stipulate that the perturbation does not generate a pressure drop across each
period; physically, the channel is open to the atmosphere or to a constant-pressure
chamber at both ends.

The motion of the interface depends on the viscosities of the two fluids µ
"

and µ
#
,

the interfacial tension γ, the unperturbed thicknesses of the two layers h
"

and h
#
, the

velocities of the two walls U
"

and U
#
, and the wavelength and amplitude of the

perturbation L and a
!
. A number of alternative sets of dimensionless parameters can

be formed using these variables ; the appropriate choice depends on the objective of the
investigation.

If the objective is to study the behaviour of an interface between two viscous fluids
in a flow that can be locally approximated as a simple shear flow, it is appropriate to
reduce all lengths by the wavelength L, time by the shear rate of the lower fluid
evaluated at the unperturbed interface ξ

"
defined in (13), and stresses by µ

"
ξ
"
, and

introduce the capillary number Ca
"
¯µ

"
ξ
"
L}γ. The four dimensionless numbers

characterizing the flow are Ca
"
, λ¯µ

#
}µ

"
, R¯ h

#
}h

"
, h}L, and a

!
}L. An alternative

set of dimensionless numbers would be Ca
#
¯µ

#
ξ
#
L}γ, λ, R, h}L, and a

!
}L.

If, on the other hand, the objective is to study the behaviour of layered flow in a
channel of specified dimensions when varying the properties of the fluids, it is
appropriate to reduce all lengths by the channel semi-width h, time by the shear rate
χ¯∆U}(2h), and stresses by µ

"
χ, and introduce the capillary number Ca¯µ

"
χh}γ.

The four dimensionless numbers of the flow are Ca, λ, R, L}h, and a
!
}h.

In the numerical studies to be described in the remainder of this section, we perform
the second type of parametric investigation, but we re-interpret the results on occasion
within the first framework. To reduce the parametric space, we set R¯ 1, that is we
consider layers of equal thickness ; the effect of layer thickness will be discussed in the
concluding section. The figures will depict the evolution of the interface in a frame of
reference that moves with the average velocity of the two plates ∆U}2.
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F 2. Evolution of the maximum height of the interface for two layers of equal thickness, R¯
1, fluids of equal viscosity, λ¯ 1, equal density, β¯ 1, Ca¯ 1, reduced wavelength L}h¯ 2, and
perturbations of different initial amplitudes. The straight line represents the predictions of the linear
theory.

3.1. Linear theory

Linear theory predicts that, as long as both a
!
}h and a

!
}L are sufficiently small, a

sinusoidal perturbation decays for any finite value of the capillary number, that is, as
long as the surface tension is non-zero. The interfacial wave is described by the
equation

y¯ y
!
­A(t) cos(2π(x®c

P
t)}L), (26)

where
A(t)¯ a

!
exp(σ

I
t) (27)

is the instantaneous amplitude of the perturbation, σ
I
is the growth rate, and c

P
is the

phase velocity. Relations between c
P
, σ

I
and the various geometrical and physical

variables of the flow may be derived in closed form by carrying out a standard linear
analysis (e.g. Pozrikidis 1997a, Chap. 9). But the intermediate and final expressions are
lengthy, and are not presented. A  program that produces these quantities can
be obtained from the author on request.

3.2. Fluids of equal �iscosity

First, we investigate the effect of the reduced amplitude of the perturbation a
!
}h and

of the capillary number Ca¯µ
"
χh}γ, with reference to the flow of two layers of equal

thickness, R¯ 1, for fluids of equal viscosity, λ¯ 1, and for reduced wavelength
L}h¯ 2.

For a
!
}h¯ 0±10 and Ca¯ 1, the numerical results are in excellent agreement with

the predictions of the linear theory. In figure 2, we plot, on a log-linear scale, the ratio
a(t)}a

!
, where a(t) is the maximum amplitude of the interface computed by quadratic

interpolation, and obtain a nearly straight line corresponding to exponential decay. The
predictions of the linear theory are represented by the straight line of slope ®0±70795.
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(a)

(b)

(c)

(d)

F 3. Sequences of interfacial profiles for R¯ 1, λ¯ 1, β¯ 1, Ca¯ 1, L}h¯ 2, and initial
amplitude (a) a

!
}h¯ 0±40 at t*¯ t∆U}h¯ 0, 0±5, 1±0, 2±0, 2±5, 3±0, 3±5, 4±0; (b) a

!
}h¯ 0±60 at t*¯

0, 0±4, 0±8, 1±2, 2±0, 3±0, 4±0, 5±0, 6±0, 7±0, 8±0, 9±0; (c, d ) a
!
}h¯ 0±80 at (c) t*¯ 0, 0±8, 1±6, 2±7, 4±0;

(d ) t*¯ 6±0, 7±4.

For the even smaller amplitude a
!
}h¯ 0±001 and Ca¯ 1, the rate of decay extracted

from the numerical results agrees with the analytical prediction to the third significant
figure.

In figure 3(a), we present a sequence of instantaneous interfacial profiles for a
disturbance with a large initial amplitude a

!
}h¯ 0±40 and Ca¯ 1. The perturbation

decays, but examining the corresponding curve in figure 2 shows that the initial rate of
decay is substantially lower than that predicted by the linear theory. Thus, finite-
amplitude effects reduce the rate of decay of a perturbation. When the amplitude of the
interface has become small, the rate of decay rises and approaches that predicted by the
linear theory. Finite-amplitude effects are manifested in the shifting of the wave crests
and troughs due to wave steepening under the action of the simple shear flow. Since
the interface assumes a flat shape at long times, this perturbation is stable.

For a
!
}h¯ 0±60, we observe a more interesting behaviour. The profiles illustrated in

figure 3(b) show that the competition between the tendency of the interface to flatten
due to surface tension, and the convective action of the simple shear flow, causes the
formation of a periodic sequence of transient lobes. The folding and immediate
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F 4. Sequences of interfacial profiles for R¯ 1, λ¯ 1, β¯ 1, Ca¯ 2, L}h¯ 2, and initial
amplitude a

!
}h¯ 0±80 at t*¯ 0, 0±3, 0±6, 0±9, 1±8, 3±0, 4±0.

unfolding of the interfacial corrugations is a striking feature of this motion. Figure 2
shows that the initial rate of decay is much smaller than that predicted by the linear
analysis, whereas the final rate of decay is somewhat higher than that predicted by
linear analysis due to the steepening of the wave.

A large-amplitude perturbation with a
!
}h¯ 0±80 can no longer be restrained by

surface tension, as depicted in figure 3(c, d ). The maximum height of the interface
decreases monotonically in time, but the folding of the interface leads to the
development of a sequence of permanent bulges that eventually transform into
elongated drops. Figure 2 shows that the thickness of the interfacial layer where
overturning occurs tends to a constant value at long times. The necks supporting the
bulges keep thinning and possibly break up at a finite time yielding a series of
compound drops. If the motion were three-dimensional, the necks would be threads,
and the Rayleigh capillary instability would facilitate the breakup. The CPU time
required for carrying out the computations shown in figure 3 ranges from 2 to 24 hours
on the facilities described in §2.

For the conditions considered here, the critical amplitude of the perturbation above
which the interface folds lies between 0±40h and 0±8h. A rough estimate of this threshold
can be obtained by comparing the magnitudes of the time it takes the interfacial wave
to decay according to linear theory, τ

D
, and the time it takes the crest of the wave to

travel a distance equal to L}4 under the action of the unperturbed shear flow, τ
T
,

thereby generating a sigmoidal profile. Assuming that the amplitude of the wave has
decayed to the value a¯ 0±10L after the time period τ

D
, and using (27), we find

®τ
D

σ
I
¯ ln(L}a

!
)®2±3. Setting τ

T
¯L}(4χa

!
), and assuming that the interface

will fold when τ
D

" τ
T
, we derive a nonlinear algebraic equation for the critical

amplitude:
ln(L}a

!,cr
)®(σ

I
}4χ) (L}a

!,cr
)®2±3¯ 0. (28)

Using the value σ
I
}χ¯®0±70795, we find a

!,cr
}L¯ 4±50 or a

!,cr
}h¯ 0±44, which is

consistent with the results of the numerical computation. A less conservative definition
for τ

D
would have given even better agreement.

Further numerical results confirm the physical intuition that increasing the surface
tension raises the critical amplitude for the interface to suffer permanent deformation.
For example, in figure 4, we present a sequence of profiles for a perturbation with
a
!
}h¯ 0±8 and Ca¯ 2. The interface tends to fold, but the restraining action of the

surface tension eventually smooths out the corrugations, and the asymptotic shape of
the interface at large times is flat. Solving (28) with σ

I
}χ¯®1±4159 gives a

!
}L¯ 3±21

corresponding to a
!
}h¯ 0±62, which provides us with a conservative estimate for

permanent deformation.
The preceding results correspond to reduced wavelength L}h¯ 2. Numerical

experimentation showed that perturbations with smaller or larger wavelengths behave
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F 5. Sequences of interfacial profiles for R¯ 1, λ¯ 1, β¯ 1, Ca¯ 1, L}h¯ 4, and initial
amplitude a

!
}h¯ 0±80 at t*¯ 0, 1±4, 3±0, 5±0.

(a)

(b)

(c)

(d)

F 6. Sequences of interfacial profiles for R¯ 1, β¯ 1, Ca¯ 1, L}h¯ 2, and initial amplitude
a
!
}h¯ 0±40, for (a, b) λ¯ 5, at t*¯ 0, 0±8, 1±6, 2±4, 3±6, 5±2, 6±2; (c, d ) λ¯ 10, at t*¯ 0, 2±1, 4±2, 6±0,

8±0, 9±6.

in a similar fashion. This is not surprising, since as long as a
!
}h is sufficiently small, so

that the disturbed interface is not too close to the wall, it is the value of the capillary
number Ca

$
¯µ

"
χL}γ and reduced amplitude a

!
}L that are most relevant to the

evolution of the interface: the channel walls are important only in producing the shear
flow.

For example, in figure 5, we present stages in the evolution of an interface for L}h¯
4, a

!
}h¯ 0±8 and Ca¯ 1, corresponding to a

!
}L¯ 0±2 and Ca

$
¯ 4, and observe

interfacial folding and formation of penetrating fingers. In figure 3(a), we have seen
that the analogous motion with L}h¯ 2, a

!
}L¯ 0±2, and Ca

$
¯ 2 was stable. For this

value of a
!
}L, the threshold value of Ca

$
for unstable motion lies between 2 and 4. The
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(a)

(b)

(c)

F 7. Sequences of interfacial profiles for R¯ 1, λ¯ 5, β¯ 1, Ca¯ 2, L}h¯ 2, and initial
amplitude a

!
}h¯ 0±80, at (a) t*¯ 0, 1±0, 2±0; (b) t*¯ 3±0, 6±0, 9±1; (c) t*¯ 12±1, 15±0, 19±75.

behaviour of long waves will be discussed further in §3.4 in the context of the long-
wave approximation.

3.3. Effect of the �iscosity ratio

The numerical computations showed that, increasing the viscosity ratio λ while
keeping all geometrical parameters and the capillary number Ca fixed, has a profound
effect on the character of the motion, and may cause the interface to show permanent
deformation of a new kind. We shall illustrate these behaviours with reference to a flow
with R¯ 1, L}h¯ 2, a

!
}h¯ 0±40, and Ca¯ 1.

In figure 3(a), we saw that when λ¯ 1, the disturbance decays and the asymptotic
shape of the interface at long times is flat. In figure 6(a, b), we present a sequence of
profiles for λ¯ 5; note that the upper fluid is more viscous than the lower one. The
interface is clearly more reluctant to return to the unperturbed shape than it was for
λ¯ 1, but not so reluctant as to allow for folding.

Figure 6(c, d ) shows that increasing λ to the value of 10 while holding all other
parameters constant causes the interfacial wave to steepen and then evolve slowly
developing a sequence of resilient bulges possibly of permanent form. Since the more-
viscous fluid is located at the top, the bulges can be interpreted as fingers of the less-
viscous fluid penetrating the more-viscous fluid under the action of the shear flow. In
this case, it is not clear that folding will occur at long times. The crest of each bulge
travels with a phase velocity that is very close to that predicted by the linear theory,
c
P

¯ 0±812χh. Unfortunately, because of the slow evolution, excessive computational
cost, on the order of 3 CPU days, places a practical constraint on the computation of
the motion at long times.

Stating, however, that increasing λ destabilizes the flow must be interpreted in an
appropriate context. The capillary number Ca was defined as µ

"
∆U}2γ, in terms of the

difference in the velocity of the channel walls ∆U, and the viscosity of the lighter fluid.
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(a)

(b)

F 8. Sequences of interfacial profiles for R¯ 1, λ¯ 10, β¯ 1, Ca¯ 2, L}h¯ 2, and initial
amplitude a

!
}h¯ 0±80 at (a) t*¯ 0, 2±0, 4±0; (b) t*¯ 8±0, 16±0.

At large values of λ, a more appropriate capillary number is Ca
%
¯µ

#
ξ
#
h
#
}γ, involving

the change in the velocity across the upper layer for unidirectional flow, and the
viscosity of the upper fluid. The two capillary numbers are related by Ca

%
¯

Ca 2λR}(λ­R). For the conditions discussed in the preceding paragraph, λ¯ 1, 5, and
10 correspond respectively, to Ca

%
¯ 1, 1±67, 1±82. In this light, it is not surprising that

the interface tends to exhibit permanent deformation when λ is raised while Ca is kept
constant.

Further numerical results showed that the interface can be destabilized for any value
of λ by subjecting it to a perturbation of a sufficiently large amplitude, provided only
that Ca is not excessively small. For example, in figures 7 and 8, we present stages in
the evolution of a disturbance with a

!
}h¯ 0±80, and Ca¯ 2, and λ¯ 5 and 10. In both

cases, fingers of the less-viscous lower fluid penetrate, and are then enclosed by, the
more-viscous upper fluid.

3.4. Long-wa�e approximation

Ooms et al. (1985) formulated an approximate theory to describe the evolution of
interfacial perturbations whose period is long compared to the channel width.
Assuming that the flow is locally unidirectional and the streamwise velocity profile
across each layer and at every station is parabolic, and requiring conservation of mass
and continuity of shear stress across the interface, they obtained the partial-differential
equations
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where h
"
(x, t) and h

#
(x, t) are the instantaneous lower and upper layer thickness and

pMod

"
(x, t) and pMod

#
(x, t) are the corresponding modified pressures excluding the

hydrostatic variation due to gravity. The y velocity component at the interface, �
I
, does

not participate in the equation of motion but may be computed by requiring
conservation of mass expressed by the kinematic boundary condition yielding

�
I
¯

¥h
"

¥t
­u

I

¥h
"

¥x
. (30)
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Requiring further that the normal stress undergo a jump across the interface, and
relating this jump to the magnitude of the surface tension, yields

pMod

#
¯ pMod

"
®∆ρgh

"
­γ

¥#h
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¥x#

, (31)

where ∆ρ¯ ρ
"
®ρ

#
. Using (31), we find that the x-component of the velocity at the

interface is given by
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where r(x, t)¯ h
#
(x, t)}h

"
(x, t) is the local and instantaneous layer thickness ratio.

Combining (29a) and (29b) to eliminate �
I
, and then using (31) and (32) to eliminate
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#
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, produces the relation
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The function f(t) arises by specifying the modified pressure drop over one period
∆pMod

"
¯∆pMpd

#
¯ pMod

"
(x­L, t)®pMod

"
(x, t). For the Couette flow considered here,

∆pMod

"
¯ 0.

Solving (33) for ¥pMod

"
}¥x and substituting the result into (29a), substituting further

the right-hand side of (30) in place of �
I
, and the right-hand side of (32) in place of u

I
,

into (29a), gives a nonlinear evolution equation for the lower layer thickness which we
write in the symbolic form
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The right-hand side is a strongly nonlinear function of the arguments of the function
F. When the amplitude of the perturbation is small compared to the wavelength, and
the surface tension is sufficiently high, (34) reduces to the Kuramoto–Sivashinsky
equation (e.g. Charru & Fabre 1994, Section IV).

To generate solutions of (34), we implemented two standard finite-difference
methods: an explicit method based on the forward-time central-space discretization,
and an implicit method based on the backward-time central-space finite-difference
discretization. The spatial step ∆x was uniform over a period of the wave, and the time
step ∆t was adjusted to prevent spurious oscillations. In the implicit method, the
nonlinear algebraic system arising from the finite-difference discretization was solved
using Newton’s method; the Jacobian matrix was computed by numerical dif-
ferentiation at every iteration. The explicit method performed well for zero or very small
values of the surface tension, but numerical instabilities set in at moderate and large
values of the surface tension. The implicit method performed well at moderate values
of the viscosity ratio even at large values of the surface tension, but the iterations failed
to converge at small or large values of the viscosity ratio. Not surprising, both methods
yielded spurious oscillations when the interfacial slope became steep. Ooms et al.
(1985) used an explicit method with upwind differences to overcome the spurious
oscillations, but carried out computations only for zero surface tension. With the
implicit method, the most demanding computations required less than 15 minutes of
CPU time at the facilities described in §2.
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The lubrication-flow model is expected to produce reliable results when the
characteristic size of the interfacial patterns is large compared to the channel width 2h.
This, of course, requires that the interface can be described in terms of a single-valued
function as y¯ q(x, t), where the magnitude of ¥q}¥x is small compared to unity.
Interfacial folding cannot be captured, but may be indicated by the continuous
steepening of the interfacial structures. Our objective is to assess the differences in
behaviour predicted by the lubrication-flow model and the unsimplified system of
governing equations, when the model is applied on the border of its range of validity.

In figure 9, we compare interfacial profiles computed from the boundary-integral
method, shown with the solid lines, to those computed using the lubrication-flow
model, shown with the dashed lines. Note that the vertical axis is stretched to show the
detailed structure of the interface. In both cases, Ca¯ 1, λ¯ 1, and L}h¯ 4; the
interfacial wave is only moderately long. The agreement for a

!
}h¯ 0±10 shown in

figure 9(a) is fair : the rate of decay of the interface is significantly overestimated by the
lubrication-flow model, and the asymmetry of the developing profile predicted by it is
less prominent. The agreement in the rate of decay improves by using the exact
expression for the mean curvature instead of the approximation shown in the last term
of equation (31) – thereby effectively reducing the importance of the surface tension –
but this an ad hoc modification that violates the self-consistency of the lubrication
approximation. Figure 9(b), corresponding to a

!
}h¯ 0±80, reveals the inability of the

lubrication-flow model to capture the interfacial folding illustrated in figure 5. The
crests continue to steepen, but the amplitude of the perturbation continues to decay
leading to a different type of behaviour at long times.

Another revealing comparison is presented in figure 9(c, d ), showing corresponding
profiles for Ca¯¢, that is, zero surface tension, λ¯ 10, and L}h¯ 4, obtained using,
respectively, the boundary-integral method and the lubrication approximation with the
explicit finite-difference method. The boundary-integral computation was stopped
when small-scale irregularities developed. Numerical experimentation indicated that
these irregularities are not necessarily a numerical artifact but may be a precursor of
local penetration. The lubrication-flow computation was stopped when numerical
oscillations set in at the crests of the steepening waves, probably requiring upwind
differences or a more sophisticated finite-difference method. Significant differences in
the shapes of the evolving waves are observed even during the time period when the
interface has a smooth shape.

Ooms et al. (1985) performed computations for L}h¯ 12, y
!
}h¯ 0±60, a

!
}h¯ 0±20,

and λ¯ 10−&, 10−%, 10−", and suggested the occurrence of steadily travelling steep
waves. Their results up to the point where the interfacial wave becomes noticeably
steep and artificial oscillations set in were reproduced using our explicit numerical
method. Unfortunately, excessive computational cost prevented us from carrying out
boundary integral computations for long wavelengths and thus from confirming the
motion predicted by the lubrication model.

The comparisons between the predictions of the lubrication model and the results of
the numerical simulations discussed in the previous paragraphs suggest that, in the
absence of fluid inertia, the physical relevance of steep interfacial waves predicted by
the former should be accepted with a certain degree of reservation, especially for waves
of moderate wavelength. It is possible that when weak or strong intertial effects are
included, the predictions of an approximate theory based on the long-wave
approximation will show better agreement with those of a direct numerical simulation,
but a critical comparison must await advances at both ends.
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4. Pressure-driven flow

In the second part of the numerical investigation, we consider the stability of the
interface in pressure-driven flow depicted in figure 1(c). In the problem statement, we
retain the assumptions and follow the notation of the preceding section. We stipulate,
in particular, that the perturbation does not generate a pressure drop across each
periodic cell, and the total pressure drop over a cell ∆P is equal to that of the
unperturbed flow. Physically, the motion is generated by a pump that operates at a
constant pressure head but variable flow rate.

The motion of the interface depends on the viscosities of the two fluids µ
"

and µ
#
,

the interfacial tension γ, the unperturbed layer thicknesses h
"

and h
#
, the negative of

the effective pressure gradient G¯®∆P}L, and the wavelength and amplitude of the
interfacial wave L and a

!
. To study the behaviour of the flow in a channel of specified

dimensions while varying the properties of the fluids, we reduce all lengths by the
channel semi-width h, time by µ}Gh, stresses by Gh, and introduce the capillary number
Ca¯Gh#}γ. The four parameters of the flow are Ca, λ¯µ

#
}µ

"
, R¯ h

#
}h

"
, L}h, and

a
!
}h.

4.1. Linear theory

As in the case of Couette flow, linear theory predicts that, so long as a
!
}h and a

!
}L are

sufficiently small, a sinusoidal perturbation decays for any finite value of the capillary
number. The evolution of the interfacial wave is described by equations (26) and (27).
Expressions relating c

P
and σ

I
to the various parameters of the flow arise from those

for Couette flow discussed in the previous section by substituting the unperturbed
velocity and velocity gradients at the interface. A  program that produces c

P

and σ
I

may be obtained by the author on request.

4.2. Results of the numerical in�estigation

The primary goal of our numerical investigation is to resolve whether the parabolicity
of the velocity profile of the unperturbed flow due to the mean pressure gradient has
a fundamental effect on the character of the motion. In this section, we focus our
attention on the flow of two layers of equal thickness, R¯ 1, and reserve comments for
the effect of R for the concluding §5.

First, we study the effect of the reduced amplitude of the perturbation a
!
}h on the

flow of two layers of equal viscosity, λ¯ 1, for reduced wavelength L}h¯ 2. Since the
unperturbed interface is located at the channel centreline, the local shear rate of the
parabolic flow is equal to zero. Thus, the present set of conditions complements those
for shear-driven flow considered in the preceding section. To avoid repetition, in the
following discussion we point out the salient new features and main differences from
the case of shear-driven flow, and consider the similarities to be implicit. The motion
of the interface is described in a frame of reference that translates with the velocity of
the unperturbed interface.

The numerical results for small-amplitude perturbations are in excellent agreement
with the predictions of the linear theory. In figure 10 we plot, on a log-linear scale, the
ratio a(t)}a

!
for Ca¯ 0±05 and a

!
}h¯ 0±20, and observe a nearly exponential decay.

The predictions of the linear theory are represented by the straight line whose slope is
equal to ®0±01127. For the small amplitude a

!
}h¯ 0±001, the rate of decay extracted

from the numerical results agrees with the linear analysis to the third significant figure.
As the initial amplitude of the perturbation is raised, the disagreement between the

linear theory and the numerical computations becomes more pronounced, and the
evolution of the interface becomes increasingly more involved. In figure 11(a), we
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F 10. Evolution of the maximum height of the interface of two layers of equal thickness in
Poiseuille flow, R¯ 1, for fluids of equal viscosity, λ¯ 1, equal density, β¯ 1, Ca¯ 0±05, reduced
wavelength L}h¯ 2, and for perturbations of different initial amplitudes. The straight line represents
the predictions of the linear theory.

(a)

(b)

F 11. Sequences of interfacial profiles for R¯ 1, λ¯ 1, β¯ 1, Ca¯ 0±05, L}h¯ 2, and
initial amplitude (a) a

!
}h¯ 0±40 at t*¯Gh t}µ¯ 0, 20±0, 40±0, 58±0; (b) a

!
}h¯ 0±80 at t*¯ 0, 7±0.

present a sequence of interfacial profiles for a disturbance with initial amplitude
a
!
}h¯ 0±40. At early times, the interface tends to attain a piecewise parabolic shape

corresponding to the velocity profile of the unperturbed flow, while the amplitude of
the disturbance is being reduced due to the surface tension. The competition between
the advective motion of the incident flow and the restraining action of surface tension
leads to the formation of an alternating row of half-arrow shapes. Eventually, the
surface tension dominates, and the interface returns to the flat shape. The folding and
unfolding of the interface are familiar from the case of Couette flow discussed in the
preceding section, but the transient shapes in Poiseuille flow are much more striking.
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(a)

(b)

F 12. Sequences of interfacial profiles for R¯ 1, λ¯ 10, β¯ 1, Ca¯ 0±05, L}h¯ 2, and
initial amplitude (a) a

!
}h¯ 0±30 at t*¯Gh t}µ¯ 0, 23±35; (b) a

!
}h¯ 0±80 at t*¯ 0, 25±0.

The reflection of the half-arrow shapes shown in figure 11(a) across the centreline
yields closed full-arrow shapes with high curvature at the front and a dimple at the
back. It is interesting to note that such shapes are obtained during the motion of drops
through a channel when the capillary number is sufficiently large, for both pressure-
driven and gravity-driven flow. This and previous observations suggest that the most
corrugated portions of the interface develop in a manner that is familiar from studies
of the motion of viscous drops.

Raising the initial amplitude of the perturbation to the value a
!
}h¯ 0±80 leads to

permanent deformation, as shown in figure 11(b). In this case, the surface tension is not
strong enough to prevent filamentation. The critical amplitude of the perturbation
above which the interface does not return to the flat shape can be estimated by
arguments that are similar to those presented in the preceding section for Couette flow,
but there is some subjectivity due to an adjustable parameter involved in the derivation.

Similar behaviours are observed for higher and lower values of the capillary number.
For each reduced wavelength L}h, there is a critical amplitude of the disturbance that
is a monotonically increasing function of the capillary number, above which the
interface exhibits permanent deformation. When the capillary number is infinite, that
is, in the absence of surface tension, the interface is simply convected as a material line
by the parabolic flow.

The effect of the viscosity ratio λ is similar to that discussed in the preceding section
for Couette flow. Increasing or decreasing λ from the value of unity, while holding all
other parameters constant, promotes the growth of the interfacial waves. For example,
in figure 12, we show typical stages in the evolution of the interface for Ca¯ 0±05,
λ¯ 10, L}h¯ 2, and a

!
}h¯ 0±30 and 0±80. In the first case, the interface develops a

periodic sequence of spikes of the less-viscous lower fluid projecting into the more-
viscous upper fluid. The computation was stopped when the curvature at the crest has
become so small that an extremely small time step was necessary in order to prevent
numerical instabilities. There is no evidence that the perturbation will decay at long
times. We note that, in the corresponding motion for λ¯ 1, the interface returns to the
flat shape at long times, and this underscores once more the destabilizing effect of the
viscosity ratio. The evolution for a

!
}h¯ 0±80 depicted in figure 12(b) is similar to that

for a
!
}h¯ 0±30, but the spikes are longer and more slender, and the lower part of the

interface tends to conform with the piecewise parabolic profile of the unperturbed flow.
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As in the case of Couette flow, it can be argued that a parametric investigation where
Ca is fixed and λ is varied is not fully revealing, and that the capillary number should
be redefined with respect to the unperturbed velocity difference across the more-viscous
fluid. This argument would give a partial reason why the waves grow as λ is raised.

5. Discussion

We have presented numerical results for layers of equal thicknesses corresponding
to R¯ 1. Computations with layers of unequal thicknesses revealed similar behaviours
with only qualitative differences. In the case of pressure-driven flow, varying the
relative layer thickness amounts to altering the rate of change of the shear rate with
respect to transverse distance across the channel, evaluated at the position of the
unperturbed interface. Linear analysis and the numerical computations discussed in
previous sections indicate that the parabolicity of the unperturbed profile affects the
behaviour of the interface in only a qualitative manner.

For example, in figure 13(a, b) we present stages in the evolution of a thin layer
attached to a wall in pressure-driven flow, for Ca¯ 0±05, R¯ 9, L}h¯ 2, a

!
}h¯ 0±10,

and λ¯ 5 and 10. Note that the wall layer is less viscous than the overlying fluid. The
interface continues to evolve beyond the final stage shown in figure 13(a), but the
computation was too expensive to continue. The computation for λ¯ 10 was stopped
when regions of high curvature developed at the bases of the forming bulges, possibly
indicating local penetration.

The final shape shown in figure 13(b), which however continues to evolve, is similar
to the steady shape of a wavy interface in axisymmetric lubricated core flow (Bai et al.
1996) ; the earlier transient shapes are similar to those computed by Yiu & Chen (1996)
and Coward et al. (1997) for two-dimensional layered flow at low and moderate
Reynolds numbers. That the interface does not seem to reach a steady shape may be
attributed to the absence of fluid inertia : the observations of Barthelet et al. (1995)
suggest that inertial effects restrain the continuous deformation and lead to saturation.
Furthermore, it is possible that the establishment of steadily travelling waves requires
larger values of the viscosity ratio, although, according to weakly nonlinear theory, it
is more likely that the bifurcation to a travelling wave be supercritical when the viscosity
ratio is moderate rather than extreme. In the oil–water core–annular flow occurring in
engineering practice, where steady shapes have been oberved, the viscosity ratio may
be on the order of 500.

Numerical computations for large viscosity ratios and small or zero surface tension
revealed the spontaneous development of regions of high interfacial curvature at the
tips of the interfacial spikes. An example is shown in figure 12(b). Regrettably, the large
computational cost required for the computation of the Green’s function prevented us
from studying the analytic structure of the interfacial shapes near the regions of high
curvature, and the computations were stopped when the local curvature became so
large that an excessively small time step was required. There is a resurgence of interest
in corner and cusp formation along two-dimensional interfaces in Stokes flow, and
recent work has shown that such singularities may occur under a broad range of
conditions (e.g. Pozrikidis 1997b). Richardson (1997) found that transient cusps may
occur even when the surface tension is non-zero. The flows considered in this paper are
not particularly well suited to studies of singularity formation, although they may serve
as prototypical models for laboratory investigations.

The results of the present numerical study contribute to our understanding of mixing
due to mechanical agitation, in the sense that they illustrate the local behaviour of a
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(a)

(b)

F 13. Sequences of interfacial profiles for R¯ 9, β¯ 1, Ca¯ 0±05, L}h¯ 2, a
!
}h¯ 0±10;

(a) λ¯ 5, t*¯Gh t}µ¯ 0, 10, 20, 26; (b) λ¯ 10, t*¯ 0, 28±0, 36±5.

non-flat interface under conditions of nearly unidirectional flow. Partial information
on the behaviour of interfaces in a purely straining ambient flow can be inferred from
analytical and numerical studies of bubble and drop deformation in linear flows.
Tjahjadi & Ottino (1991) studied the stretching and disintegration of a drop in two-
dimensional journal-bearing flow under conditions of chaotic advection, and identified
the significance of the local structure of the flow and of the physical properties of the
fluids. Analogous studies with large blobs or layers of stratified fluid subjected to
carefully designed flows will illuminate the micro-physics of heterogeneous mixing in
viscous flows.

I am indebted to Professors Y. Y. Renardy and M. Renardy for making me aware
of their recent numerical simulations. Madhu Gopalakrishnan assisted me in the
formulation of the linear stability problem. This research was supported by the
National Science Foundation and the SUN Microsystems Corporation. Acknowl-
edgement is made to the Donors of the Petroleum Research Fund, administered by
the American Chemical Society, for partial support.
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